

1

COURSE DESCRIPTION CARD - SYLLABUS

Course name

Discrete Optimization

Course

Field of study

Artificial intelligence

Area of study (specialization)

Level of study
First-cycle studies
Form of study

full-time

Year/Semester

2/3

Profile of study

general academic

Course offered in
English

Requirements

elective

 Number of hours

Lecture

30

Tutorials

Laboratory classes

30

Projects/seminars

Other (e.g. online)

Number of credit points

5

Lecturers

Responsible for the course/lecturer:

Maciej Drozdowski

email: Maciej.Drozdowski@cs.put.poznan.pl

tel: 616652981

Faculty of Computing and Telecommunications

Piotrowo 2, 60-965 Poznań

Responsible for the course/lecturer:

 Prerequisites

A student beginning this subject of study should have basic understanding of discrete mathematics (set

theory, logic, graph theory), methods of algorithm design, basic programming structures, abstract data

types (e.g. lists, stacks, queues, arbitrary graphs), typical algorithms (e.g. sorting, search in data

structures), also basic knowledge on the computational complexity of algorithms and problems.

The student should be able to design basic algorithms and code them, to recognize basic discrete

structures, to estimate computational complexity of algorithms, as well as acquire information from the

indicated sources.

The student should understand the necessity of expanding his/her competences and be ready to

undertake cooperation in a team. As far as social competences are considered, the student must be

honest, responsible, persevering, curious, creative, respectful to other people.

Course objective

Introduction into basic problems of discrete optimization and the methods of solving them. In particular:

2

1. acquiring ground understanding on optimizing problems with discrete nature,

2. demonstrating solvability barrier arising from exponential computational complexity of algorithms

and computational hardness of problems and to stimulate understanding consequences of this barrier,

3. developing a skill of recognizing hard discrete optimization problems,

4. familiarizing with the methodology of analyzing and practically solving of computationally hard

optimization tasks for problems with discrete nature.

Course-related learning outcomes

Knowledge

1. ordered and theoretically grounded general knowledge on key issues of computer science, the issues

of the current subject

2. knowledge on important directions and developments of computing, and related areas

3. knowing basic methods, techniques and tools applied in the process of solving combonatorial

optimization problems mainly of engeenering type, solving simple cases of analyzing computational

complexity of algorithms and discrete problems

Skills

1. designing and conducting simple experiments in discrete optimization, in particular computer

measurements and simulations, analyzing the obtained results and drawing conclusions

2. apply analytical and experimental methods to solve discrete optimization problems

3. estimating computational complexity of algorithms and problems

4. designing and coding algorithms using at least one popular tool

Social competences

1. understanding that knowledge and skills in computer science quickly change and deprecate

2. understanding the meaning of knwoledge in solving engineering problems, knowing examples of

engineering problems leading to social issues

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Formative assessment:

a) lectures:

- based on answers to question asked and open problems posed during the lectures,

b) labs:

- evaluation of the correctness of the programs solving the assigned discrete optimization problems

- evaluation of student’s knowledge necessary to prepare, and carry out the lab tasks

Total assessment:

a) lectures:

- based on answers to question in a written exam,

b) labs:

- monitoring students activities during classes,

- evaluation of reports on the method and computer program solving the assigned discrete optimization

3

problems

Additional elements cover:

- punctuality: additional points for providing solutions (programs) and reports on time

- efficiency (time, quality) of the solutions delivered by the student programs

- ability to work in a team solving a lab assignment

- recommendations improving the teaching process.

Programme content

The lecture covers the following topics: Pseudopolynomial dynamic programming algorithms for

partition and knapsack problems. Strong NP-hardness. Computational complexity of optimization

problems: NP-hardness. The notion of approximation algorithms, examples of approximation

algorithms. Hardness of approximation. Practical solving of hard discrete optimization problems.

Algorithm selection problem. Computationally easy discrete optimization problems: Shortest paths in

graphs: Dijkstra's algorithm, DAG algorithm, all-pair shortest paths algorithm. Transitive closure of a

binary relation: Floyd-Warshall algorithm. Network flows and related problems: maximum flow

problem, Dinic algorithm. flows with minimum arc flow, minimum cost flows, applications of max flow

problem in solving scheduling problems and graph partitioning. Matching in bipartite graphs. Greedy

algorithms with examples, e.g. Kruskal and Prim algorithms for minimum spanning tree. The notion of a

matroid. Graph coloring problem: formulation, applications, algorithms. Packing and cutting:

formulation, applications, bin packing problem, algorithms for bin packing.

During the lab-classes students solve NP-hard optimization problems. It is required to design and code

at least two algorithms solving the assigned problem: a fast method (e.g. greedy algorithm) and of

improved quality solutions method (e.g. a branch and bound or metaheuristic method).

Teaching methods

Lecture: multimedia presentation, illustrated with examples given on the board.

Labs: practical solving discrete optimization problems by coding their solutions, conducting

computational experiments, discussion on the chosen methods, team work.

Bibliography

Basic

1. J. Błażewicz, Złożoność obliczeniowa problemów kombinatorycznych, WNT, W-wa, 1988

2. W. Lipski, Kombinatoryka dla programistów, WNT, W-wa, 1982

3. M.R.Garey, D.S.Johnson, Computers and intractability: A guide to the theory of NP-completeness,

W.H.Freeman, San Francisco, 1979

4. W.Cook, W.Cunningham, W.Pulleyblank, A.Schrijver, Combinatorial optimization, Wiley &#38;

Sons, 1998

5. M.Sysło, N.Deo, J.Kowalik, Algorytmy optymalizacji dyskretnej z programami w języku Pascal, PWN,

Warszawa, 1993

4

6. T.Cormen, C.Leiserson, R.Rivest, C.Stein, Wprowadzenie do algorytmów, WNT, Warszawa, 2005

7. M.Kubale (redaktor), Optymalizacja dyskretna modele i metody kolorowania grafów, WNT, Warszawa,

2003.

Additional

1. J. Błażewicz, K. Ecker, E.Pesch, G. Schmidt, J. Węglarz, Scheduling Computer and Manufacturing

Processes, Springer, Berlin, New York, 2001

2. J.Błazewicz, W.Cellary, R.Słowinski, J.Weglarz, Badania operacyjne dla informatyków, WNT, W-wa,

1983

3. L.Banachowski, A.Kreczmar, Elementy analizy algorytmów, WNT, W-wa, 1989

4. A.V.Aho, J.E.Hopcroft, J.D.Ullman, Projektowanie i analiza algorytmów komputerowych, PWN, W-wa,

1983

5. K.Manuszewski, Grafy Algorytmicznie trudne do kolorowania, praca doktorska, WETI, Gdańsk, 1997

6. M.Drozdowski, D.Kowalski, J.Mizgajski, D.Mokwa, G.Pawlak, Mind the gap: a heuristic study of

subway tours, Journal of Heuristics vol.20, Issue 5, October 2014, pp 561-587, DOI 10.1007/s10732-014-

9252-3

7. J.Marszałkowski, D.Mokwa, M.Drozdowski, Ł.Rusiecki, H.Narożny, Fast algorithms for online

construction of web tag clouds, Engineering Applications of Artificial Intelligence, vol. 64 (2017) pp. 378-

390 DOI: 10.1016/j.engappai.2017.06.023

8. J.Wawrzyniak, M.Drozdowski, É.Sanlaville, Selecting Algorithms for Large Berth Allocation Problems,

European Journal of Operational Research, Volume 283, Issue 3, 16 June 2020, Pages 844-862,

https://doi.org/10.1016/j.ejor.2019.11.055

Breakdown of average student's workload

 Hours ECTS

Total workload 120 5,0

Classes requiring direct contact with the teacher 60 2,5

Student's own work (literature studies, preparation for
laboratory classes/tutorials, preparation for tests/exam, project
preparation,) 1

60 2,5

1
 delete or add other activities as appropriate

